3.381 \(\int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=376 \[ \frac {2 b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 (A b-a B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b d \sqrt {a+b}}+\frac {2 (A b-a B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b d \sqrt {a+b}} \]

[Out]

2*(A*b-B*a)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+
b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d/(a+b)^(1/2)-2*(A*b-B*a)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^
(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d/(a
+b)^(1/2)-2*A*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2
)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+2*b*(A*b-B*a)*tan(d*x+c)/a/(a^2-b^2)/d/
(a+b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.43, antiderivative size = 376, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3923, 4058, 3921, 3784, 3832, 4004} \[ \frac {2 b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 (A b-a B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b d \sqrt {a+b}}+\frac {2 (A b-a B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a b d \sqrt {a+b}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*(A*b - a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(
1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*b*Sqrt[a + b]*d) - (2*(A*b - a*B)*Cot[
c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/
(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*b*Sqrt[a + b]*d) - (2*A*Sqrt[a + b]*Cot[c + d*x]*Elliptic
Pi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a +
b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a^2*d) + (2*b*(A*b - a*B)*Tan[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a
+ b*Sec[c + d*x]])

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3923

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(b*(
b*c - a*d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 -
 b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[c*(a^2 - b^2)*(m + 1) - (a*(b*c - a*d)*(m + 1))*Csc[e + f*x] + b
*(b*c - a*d)*(m + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m,
 -1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx &=\frac {2 b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {-\frac {1}{2} A \left (a^2-b^2\right )+\frac {1}{2} a (A b-a B) \sec (c+d x)+\frac {1}{2} b (A b-a B) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {-\frac {1}{2} A \left (a^2-b^2\right )+\left (\frac {1}{2} a (A b-a B)-\frac {1}{2} b (A b-a B)\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}-\frac {(b (A b-a B)) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {2 (A b-a B) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}+\frac {2 b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {A \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}-\frac {(A b-a B) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{a (a+b)}\\ &=\frac {2 (A b-a B) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}-\frac {2 (A b-a B) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {2 b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 14.58, size = 1491, normalized size = 3.97 \[ \text {result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x])/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*Sec[c + d*x]*(A + B*Sec[c + d*x])*((2*(-(A*b) + a*B)*Sin[c + d*x])/(a*(a^2 - b^2)) - (
2*(-(A*b^2*Sin[c + d*x]) + a*b*B*Sin[c + d*x]))/(a*(a^2 - b^2)*(b + a*Cos[c + d*x]))))/(d*(B + A*Cos[c + d*x])
*(a + b*Sec[c + d*x])^(3/2)) + (2*(b + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x])*Sqrt[(a +
 b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)]*(a*A*b*Sqrt[(-a + b)/(a + b)]*Tan[
(c + d*x)/2] + A*b^2*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2] - a^2*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2] -
 a*b*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2] - 2*a*A*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^3 + 2*a^2*Sqr
t[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2]^3 + a*A*b*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]^5 - A*b^2*Sqrt[(-a +
b)/(a + b)]*Tan[(c + d*x)/2]^5 - a^2*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2]^5 + a*b*Sqrt[(-a + b)/(a + b)]*
B*Tan[(c + d*x)/2]^5 - (2*I)*a^2*A*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*
x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^
2)/(a + b)] + (2*I)*A*b^2*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (
a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b
)] - (2*I)*a^2*A*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a
 - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]
^2)/(a + b)] + (2*I)*A*b^2*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]],
(a + b)/(a - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c
 + d*x)/2]^2)/(a + b)] + I*(a - b)*(-(A*b) + a*B)*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]]
, (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 +
b*Tan[(c + d*x)/2]^2)/(a + b)] + I*(a - b)*(2*A*b + a*(A - B))*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[
(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c +
 d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(a*Sqrt[(-a + b)/(a + b)]*(a^2 - b^2)*d*(B + A*Cos[c + d*x])*(a
+ b*Sec[c + d*x])^(3/2)*(-1 + Tan[(c + d*x)/2]^2)*Sqrt[(1 + Tan[(c + d*x)/2]^2)/(1 - Tan[(c + d*x)/2]^2)]*(a*(
-1 + Tan[(c + d*x)/2]^2) - b*(1 + Tan[(c + d*x)/2]^2)))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 2.10, size = 2010, normalized size = 5.35 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x)

[Out]

-1/d*4^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+B*cos(d*
x+c)^2*a^2+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+2*A*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+
c),-1,((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)-B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+B*cos(d*x+c)
*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(
d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b+A*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*co
s(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b-A*cos(d*x+
c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b-B*cos(d*x+c)*a^2+A*cos(d*x+c)^2*b^2-A*cos(d*x+c)*b^2-A*cos(d*x+c
)^2*a*b+A*cos(d*x+c)*a*b-B*cos(d*x+c)^2*a*b+B*cos(d*x+c)*a*b-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x
+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+B*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c)
)/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)+2*A*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2-2*A*cos
(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x
+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2-A*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*co
s(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2
-A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/s
in(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x
+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+B*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*a*b*sin(d*x+c)-B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*El
lipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+A*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(
a+b))^(1/2))*b^2-B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2+B*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/
2))*sin(d*x+c)*a^2)/(b+a*cos(d*x+c))/sin(d*x+c)/a/(a+b)/(a-b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int((A + B/cos(c + d*x))/(a + b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))/(a + b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________